## 4(e). The Fundamental Theorem for Gradients

Suppose we have a scalar function of three variables $V(x, y, z)$. Starting at point $a$, we moves a small distance $d \vec{l}_{1}$. Then

$$
d V=(\vec{\nabla} V) \cdot d \vec{l}_{1}
$$

Now we move a little further, by an additional small displacement $d \vec{l}_{2}$; the incremental change in $V$ will be $(\vec{\nabla} V) \cdot d \vec{l}_{2}$. In this manner, proceeding by infinitesimal steps, we make the journey to point $b$.
 At each step we compute the gradient of $V$ (at that point) and dot it into the displacement $d \vec{l} \ldots$ this gives us the change in $V$. Evidently the total change in $V$ in going from $a$ to $b$ along the path selected is

$$
\int_{P}^{b}(\vec{\nabla} V) \cdot d \vec{l}=V(b)-V(a)
$$

This is called the fundamental theorem for gradients; like the "ordinary" fundamental theorem, it says that the integral (here a line integral) of a derivative (here the gradient) is given by the value of the function at the boundaries ( $a$ and $b$ ).

## Geometrical Interpretation

Suppose you wanted to determine the height of the Eiffel Tower. You could climb the stairs, using a ruler to measure the rise at each step, and adding them all up or you could place altimeters at the top and the bottom, and subtract the two readings; you should get the same answer either way (that's the fundamental theorem).
Corollary 1: $\int_{a}^{b}(\vec{\nabla} V) \cdot d \dot{l}$ is independent of path taken from $a$ to $b$.
Corollary 2: $\oint(\vec{\nabla} V) \cdot d \vec{l}=0$, since the beginning and end points are identical, and hence

$$
V(b)-V(a)=0 .
$$

Example: Let $V=x y^{2}$, and take point $a$ to be the origin $(0,0,0)$ and $b$ the point $(2,1,0)$. Check the fundamental theorem for gradients.
Solution: Although the integral is independent of path, we must pick a specific path in order to evaluate it. Let's go out along the $x$ axis (step $i$ ) and then up (step $i i$ ). As always, $d \vec{l}=d x \hat{x}+d y \hat{y}+d z \hat{z}, \vec{\nabla} V=y^{2} \hat{x}+2 x y \hat{y}$
(i) $y=0$; $d \vec{l}=d x \hat{x}, \vec{\nabla} V \cdot d \vec{l}=y^{2} d x=0$, so $\int_{i} \vec{\nabla} V \cdot d \vec{l}=0$
(ii) $x=2 ; d \vec{l}=d y \hat{y}, \vec{\nabla} V \cdot d \vec{l}=2 x y d y=4 y d y$, so

$$
\int_{i i} \vec{\nabla} V \cdot d \vec{l}=\int_{0}^{1} 4 y d y=\left.2 y^{2}\right|_{0} ^{1}=2
$$



Evidently the total line integral is 2.
This consistent with the fundamental theorem: $T(\mathrm{~b})-T(\mathrm{a})=2-0=2$.
Calculate the same integral along path (iii) (the straight line from $a$ to $b$ ):
(iii) $y=\frac{1}{2} x, d y=\frac{1}{2} d x, \vec{\nabla} V \cdot d \vec{l}=y^{2} d x+2 x y d y=\frac{3}{4} x^{2} d x$, so
$\int_{i i i} \vec{\nabla} V \cdot d \vec{l}=\int_{0}^{2} \frac{3}{4} x^{2} d x=\left.\frac{1}{4} x^{3}\right|_{0} ^{2}=2$. Thus the integral is independent of path.

